Identification of the amino acid region involved in the intercellular interaction between the β1 subunits of Na+/K+ -ATPase.

نویسندگان

  • Elmira Tokhtaeva
  • George Sachs
  • Haiying Sun
  • Laura A Dada
  • Jacob I Sznajder
  • Olga Vagin
چکیده

Epithelial junctions depend on intercellular interactions between β(1) subunits of the Na(+)/K(+)-ATPase molecules of neighboring cells. The interaction between dog and rat subunits is less effective than the interaction between two dog β(1) subunits, indicating the importance of species-specific regions for β(1)-β(1) binding. To identify these regions, the species-specific amino acid residues were mapped on a high-resolution structure of the Na(+)/K(+)-ATPase β(1) subunit to select those exposed towards the β(1) subunit of the neighboring cell. These exposed residues were mutated in both dog and rat YFP-linked β(1) subunits (YFP-β(1)) and also in the secreted extracellular domain of the dog β(1) subunit. Five rat-like mutations in the amino acid region spanning residues 198-207 of the dog YFP-β(1) expressed in Madin-Darby canine kidney (MDCK) cells decreased co-precipitation of the endogenous dog β(1) subunit with YFP-β(1) to the level observed between dog β(1) and rat YFP-β(1). In parallel, these mutations impaired the recognition of YFP-β(1) by the dog-specific antibody that inhibits cell adhesion between MDCK cells. Accordingly, dog-like mutations in rat YFP-β(1) increased both the (YFP-β(1))-β(1) interaction in MDCK cells and recognition by the antibody. Conversely, rat-like mutations in the secreted extracellular domain of the dog β(1) subunit increased its interaction with rat YFP-β(1) in vitro. In addition, these mutations resulted in a reduction of intercellular adhesion between rat lung epithelial cells following addition of the secreted extracellular domain of the dog β(1) subunit to a cell suspension. Therefore, the amino acid region 198-207 is crucial for both trans-dimerization of the Na(+)/K(+)-ATPase β(1) subunits and cell-cell adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits.

FXYD5 (also known as dysadherin), a regulatory subunit of the Na,K-ATPase, impairs intercellular adhesion by a poorly understood mechanism. Here, we determined whether FXYD5 disrupts the trans-dimerization of Na,K-ATPase molecules located in neighboring cells. Mutagenesis of the Na,K-ATPase β1 subunit identified four conserved residues, including Y199, that are crucial for the intercellular Na,...

متن کامل

The Polarized Distribution of Na+,K+-ATPase: Role of the Interaction between β Subunits

The very existence of higher metazoans depends on the vectorial transport of substances across epithelia. A crucial element of this transport is the membrane enzyme Na(+),K(+)-ATPase. Not only is this enzyme distributed in a polarized manner in a restricted domain of the plasma membrane but also it creates the ionic gradients that drive the net movement of glucose, amino acids, and ions across ...

متن کامل

The effect of exercise and beta2-adrenergic stimulation on glutathionylation and function of the Na,K-ATPase in human skeletal muscle

Potassium and sodium displacements across the skeletal muscle membrane during exercise may cause fatigue and are in part controlled by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for muscle functioning. We investigated the effect of oxidative stress (glutathionylation) on Na,K-ATPase activity. Ten male subjects performed three bouts of 4-min submaximal exercise followe...

متن کامل

Epithelial junctions depend on intercellular trans-interactions between the Na,K-ATPase β₁ subunits.

N-Glycans of the Na,K-ATPase β₁ subunit are important for intercellular adhesion in epithelia, suggesting that epithelial junctions depend on N-glycan-mediated interactions between the β₁ subunits of neighboring cells. The level of co-immunoprecipitation of the endogenous β₁ subunit with various YFP-linked β₁ subunits expressed in Madin-Darby canine kidney cells was used to assess β₁-β₁ interac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 125 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2012